
Orange3-Argument Documentation
Release 0.1.2

Biolab

Nov 21, 2023

CONTENTS

1 Contents 3

Python Module Index 39

Index 41

i

ii

Orange3-Argument Documentation, Release 0.1.2

This work is an open-source Python package that implements a pipeline of processing, analyzing, and visualizing an
argument corpus and the attacking relationship inside the corpus.

It also implements the corresponding GUIs on a scientific workflow platform named Orange3, so that users with little
knowledge of Python programming can also benefit from it.

CONTENTS 1

https://orangedatamining.com/

Orange3-Argument Documentation, Release 0.1.2

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Introduction

This work is designed with a clear mission: to empower researchers in building their own argument mining workflows
effortlessly. Leveraging the capabilities of state-of-the-art, pre-trained language models for natural language processing,
this tool facilitates the process of processing, analyzing, and understanding arguments from text data.

At its core, this work is committed to transparency and interpretability throughout the analysis process. We believe
that clarity and comprehensibility are paramount when working with complex language data. As such, the tool not
only automates the task but also ensures that the results are easily interpretable, allowing researchers to gain valuable
insights from their data.

Moreover, we have implemented an intuitive, visual programming module that brings the power of argument mining to
researchers with limited programming expertise. This feature enables individuals from diverse backgrounds to harness
the potential of argument analysis, making it accessible to a broader range of researchers and practitioners.

The package contains three components that can be used to build the workflow:

• Chunker: Split arguments into smaller chunks, learn topics of chunks through topic modeling, measure sentiment
and important of chunks within arguments.

• Processor: Merge chunks and meta back to arguments, compute coherence and other potential measurements of
arguments.

• Miner: Build attack network of arguments, label supportive and defeated arguments based on the network struc-
ture.

1.2 Installation

1.2.1 Preparation

To install this package, we assume that you have Python installed on your computer. However, if that is not the case,
we highly recommend that you first consult the installation guides of Python. You should install Python 3.8 or higher
versions to use this package. Additionally, while it’s not necessary to be familiar with shell commands, if you’re
interested, you can explore this helpful list of commonly used shell commands.

Once you have Python installed, open the terminal on your computer:

• Windows: If you runs Windows 11 on your computer, press the Win key, search for “PowerShell” and then open
it. In case of Windows 10, you need to first download it from the Microsoft Store.

• Linux: You can press the Ctrl + Alt + T key to fire up the terminal.

3

https://docs.python-guide.org/starting/installation/
https://guide.esciencecenter.nl/#/best_practices/language_guides/bash?id=commonly-used-command-line-tools
https://apps.microsoft.com/store/detail/windows-terminal/9N0DX20HK701

Orange3-Argument Documentation, Release 0.1.2

4 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

• MacOS: Click the Launchpad icon in the Doc, or press the Cmd + Space type “Terminal” in the search field,
then click Terminal.

1.2.2 Installation

To install, we recommend to first navigate to your working directory by running this command:

cd /path/to/your/working/directory

We recommend to install our package in a new virtual environment to avoid dependency conflicts, and we recommand
to use venv to do this:

python -m venv venv

To activate the virtual environment just created, on Windows, run:

venv\Scripts\activate

And on Linux and MacOS, run:

source venv/bin/activate

Then, to install this package, run:

pip install orangearg

1.3 Example: Review Labeling by Topic

In this notebook, we will use a subset of the Amazon Product Review data to demonstrate the usage of this work for
labeling arguments. The problem to be addressed here is determining the credibility (reliable/unreliable) of reviews
that evaluate a specific aspect of the product (i.e. size of shoes) and being able to provide reasoning for the results. The
dataset can be found here.

[21]: from orangearg.argument.miner import reader, chunker, processor, miner

fpath = "./example_dataset.json"

1.3.1 Read the input file

[2]: df_arguments = reader.read_json_file(fpath=fpath)
df_arguments = df_arguments.dropna().reset_index(drop=True) # remove rows with na

The results of reading the data file are as follows. It can be seen that this dataset contains two aspects of information,
namely the text of the reviews (reviewText) and the rating evaluations provided by the purchasers (overall, ranging
from 1 to 5 stars).

[3]: df_arguments

1.3. Example: Review Labeling by Topic 5

https://github.com/EyeofBeholder-NLeSC/orange3-argument/blob/doc/examples/example_dataset.json

Orange3-Argument Documentation, Release 0.1.2

[3]: reviewText overall
0 I always get a half size up in my tennis shoes... 3
1 Put them on and walked 3 hours with no problem... 5
2 excelente 5
3 The shoes fit well in the arch area. They are ... 4
4 Tried them on in a store before buying online ... 5
..
365 Favorite Nike shoe ever! The flex sole is exce... 5
366 I wear these everyday to work, the gym, etc. 5
367 Love these shoes! Great fit, very light weight. 5
368 Super comfortable and fit my small feet perfec... 5
369 Love these shoes! 5

[370 rows x 2 columns]

1.3.2 Split arguments into chunks

By analyzing, reviews will first be segmented into smaller chunks, which are clauses that express complete mean-
ings. The reason for doing this is to identify from which different perspectives reviews provide their evaluations, in
preparation for the subsequent review labeling process.

[4]: arguments = df_arguments["reviewText"]
arg_scores = df_arguments["overall"]

Split reviews into chunks
chunk_arg_ids, chunks = chunker.get_chunk(docs=arguments)

Compute polarity score of chunks
chunk_p_scores = chunker.get_chunk_polarity_score(chunks=chunks)

Compute topics of chunks
chunk_topics, chunk_embeds, df_topics = chunker.get_chunk_topic(chunks=chunks)

Comput importance of chunks inside the arguments
chunk_ranks = chunker.get_chunk_rank(arg_ids=chunk_arg_ids, embeds=chunk_embeds)

Collect everything together as a dataframe
df_chunks = chunker.get_chunk_table(

arg_ids=chunk_arg_ids,
chunks=chunks,
p_scores=chunk_p_scores,
topics=chunk_topics,
ranks=chunk_ranks

)

Some explanations of df_chunks:

• argument_id: the index of the argument the chunk coming from.

• polarity_score: the sentiment polarity score of a chunk, in range of [-1, 1], where 0 signifies neutrality,
positive values indicate positivity, and negative values denote negativity.

• topic: the index of a topic in the df_topics table below.

6 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

• rank: importance of a chunk within the argument it comes from, in range of [0, 1]. This is computed as the pager-
ank of chunks based on the similarity network of chunks. Therefore, the sum of ranks from chunks belonging to
the same argument is equal to 1.

[5]: df_chunks

[5]: argument_id chunk \
0 0 I always get a half size up in my tennis shoes .
1 0 For some reason these feel to big in the heel ...
2 1 walked 3 hours with no problem
3 1 Put them on and !
4 1 Love them !
...
1192 368 I can wear the shoe all day long and
1193 368 they are easy to clean compared to other shoes...
1194 368 They are light colored so any dirt will be see...
1195 368 Would definitely buy another pair in a differe...
1196 369 Love these shoes !

polarity_score topic rank
0 -0.166667 4 0.500000
1 -0.050000 10 0.500000
2 0.000000 7 0.249374
3 0.000000 2 0.255228
4 0.625000 3 0.250344
...
1192 -0.050000 15 0.125961
1193 0.225000 0 0.128238
1194 0.342857 23 0.128449
1195 0.000000 13 0.125681
1196 0.625000 22 1.000000

[1197 rows x 5 columns]

And explanations of df_topics:

• topic: the index of a topic

• count: the number of chunks in a topic

• keywords: the top keywords of a topic

• name: a short name of the topic

[6]: df_topics.head()

[6]: topic count name \
0 0 147 0_shoes_the_these_for
1 1 99 1_fit_perfect_true_perfectly
2 2 87 2_for_them_work_use
3 3 79 3_love_them_they_are
4 4 74 4_size_ordered_half_big

keywords
0 (shoes, the, these, for, shoe, comfortable, ar...
1 (fit, perfect, true, perfectly, fits, expected...
2 (for, them, work, use, wear, training, in, gym...

(continues on next page)

1.3. Example: Review Labeling by Topic 7

Orange3-Argument Documentation, Release 0.1.2

(continued from previous page)

3 (love, them, they, are, these, cute, really, p...
4 (size, ordered, half, big, large, order, an, a...

1.3.3 Merge chunks back to arguments

By merging the chunks back into reviews and performing the corresponding computations, we will obtain relevant infor-
mation at the review level, including the topics covered in each review, the sentiment of the review, and its consistency
with the overall score. This information will be further used for labeling reviews under different topics.

[7]: # Compute topics of arguments
arg_topics = processor.get_argument_topics(arg_ids=chunk_arg_ids, topics=chunk_topics)

Compute sentiment of arguments
arg_sentiments = processor.get_argument_sentiment(arg_ids=chunk_arg_ids, ranks=chunk_
→˓ranks, p_scores=chunk_p_scores)

Compute the coherence between the sentiments and the overall of arguments
arg_coherences = processor.get_argument_coherence(scores=arg_scores, sentiments=arg_
→˓sentiments)

Collect everything together as a datafrae
df_arguments_processed = processor.update_argument_table(

df_arguments=df_arguments,
topics=arg_topics,
sentiments=arg_sentiments,
coherences=arg_coherences

)

Some columns are added to the original df_arguments dataframe, which are:

• topics: the topics that an argument has mentioned.

• sentiment: the sentiment score of an argument, in range of [0, 1], the higher the more positive.

• coherence: the coherence between the sentiment and overall, in range of [0, 1], the higher the more coher-
ent.

[8]: df_arguments_processed.head()

[8]: reviewText overall \
0 I always get a half size up in my tennis shoes... 3
1 Put them on and walked 3 hours with no problem... 5
2 excelente 5
3 The shoes fit well in the arch area. They are ... 4
4 Tried them on in a store before buying online ... 5

topics sentiment coherence
0 (4, 10) 0.445833 0.992692
1 (7, 2, 3, 9) 0.627243 0.706545
2 (6,) 0.500000 0.535261
3 (0, 10, 10, 21) 0.524397 0.880521
4 (1, 0, 5, 0, 6) 0.712758 0.813614

8 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

1.3.4 Review labeling

In this step, by looking at reviews under a specific topic, an attacking network of reviews are built, where nodes are
reviews and edges are the attacks in between. Reviews are labeled based on that.

These are the rules of generating the network:

• Edges exist only between reviews with different overall.

• Edges start from a review with higher coherence to lower coherence.

• Weight of edges are computed as difference of coherence of the vertices.

• A node is labeled as supportive (meaning reliable in our case),

– if no other nodes attack it, or

– if all attackers of this node are attacked by some other nodes.

• A node is labeled as defeated (meaning unreliable in our case), if it is not supportive.

[9]: from IPython.display import display, HTML

Select reviews of the last topic
last_topic = df_topics.iloc[-1]["topic"]
print(f"The last topic is topic nr. {last_topic}:")
display(HTML(df_topics[df_topics["topic"] == last_topic].to_html()))

The last topic is topic nr. 24:

<IPython.core.display.HTML object>

Seems that the arguments under this topic are about judgements of the returning experience of this product.

[10]: # select the arguments under the last topic
arg_selection = miner.select_by_topic(data=df_arguments_processed, topic=last_topic)
arg_selection = arg_selection.rename(columns={

"reviewText": "argument",
"overall": "score"

}) # rename columns for the following steps
arg_selection

[10]: argument score \
0 I wore these shoe one time, from the airport i... 1
1 I usually wear a size 8 and they fit fine. The... 1
2 Great shoe! Outside arch is kind of high, but ... 5
3 I bought these for gym training - weight class... 2
4 Oops! I returned these because I ordered wrong... 1
5 I loved these shoes...that is until after abou... 1
6 I returned them...found a Ryka pair I liked be... 3
7 I got the impression it's cushiony and comfy b... 3
8 Ordered 9(m) received 9 Wide for the second ti... 1
9 Returning these. the pictures on here make the... 1
10 Tried one in the store and bought it online bu... 2
11 I returned these as they were not true to size... 2
12 I bought a pair of these in my size, but they ... 3
13 Unfortunately, this Flex Supreme does NOT have... 1
14 After using this shoes seven times for regular... 1

(continues on next page)

1.3. Example: Review Labeling by Topic 9

Orange3-Argument Documentation, Release 0.1.2

(continued from previous page)

topics sentiment coherence argument_id
0 (16, 14, 23, 24, 24) 0.500000 0.535261 46
1 (1, 4, 10, 24, 4, 6) 0.496439 0.540030 77
2 (21, 2, 19, 14, 4, 4, 4, 1, 24) 0.659098 0.747863 78
3 (13, 2, 7, 7, 18, 7, 24, 10) 0.516497 0.837317 83
4 (14, 24) 0.343750 0.744226 114
5 (13, 7, 24) 0.599393 0.407310 118
6 (24,) 0.775000 0.827735 121
7 (0, 2, 24, 11, 9, 18, 6, 24) 0.565749 0.989251 154
8 (4, 4, 24) 0.491652 0.546454 205
9 (24, 23, 23, 23, 3, 15) 0.520525 0.507953 254
10 (24, 24, 23, 1) 0.557920 0.788963 263
11 (24, 4) 0.509821 0.844705 266
12 (4, 4, 7, 0, 24) 0.440069 0.991061 288
13 (9, 10, 24, 24) 0.494785 0.542248 304
14 (7, 14, 20, 24) 0.346269 0.741000 305

[11]: # Compute edges of the attacking network
edges = miner.get_edges(data=arg_selection)
weights = miner.get_edge_weights(data=arg_selection, edges=edges)
df_edges = miner.get_edge_table(edges=edges, weights=weights)

Edges are defined between reviews with different overall scores. Also, edges are directed and weighted, where source
and target are indices of reviews in arg_selection.

[12]: df_edges

[12]: source target weight
0 2 0 0.21
1 3 0 0.30
2 6 0 0.29
3 7 0 0.45
4 10 0 0.25
..
66 12 11 0.15
67 11 13 0.30
68 11 14 0.10
69 12 13 0.45
70 12 14 0.25

[71 rows x 3 columns]

[13]: # Compute labels of reviews in the selection
labels = miner.get_node_labels(

indices=arg_selection.index.tolist(),
sources=df_edges["source"].tolist(),
targets=df_edges["target"].tolist()

)
arg_selection["labels"] = labels
arg_selection

10 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

[13]: argument score \
0 I wore these shoe one time, from the airport i... 1
1 I usually wear a size 8 and they fit fine. The... 1
2 Great shoe! Outside arch is kind of high, but ... 5
3 I bought these for gym training - weight class... 2
4 Oops! I returned these because I ordered wrong... 1
5 I loved these shoes...that is until after abou... 1
6 I returned them...found a Ryka pair I liked be... 3
7 I got the impression it's cushiony and comfy b... 3
8 Ordered 9(m) received 9 Wide for the second ti... 1
9 Returning these. the pictures on here make the... 1
10 Tried one in the store and bought it online bu... 2
11 I returned these as they were not true to size... 2
12 I bought a pair of these in my size, but they ... 3
13 Unfortunately, this Flex Supreme does NOT have... 1
14 After using this shoes seven times for regular... 1

topics sentiment coherence argument_id \
0 (16, 14, 23, 24, 24) 0.500000 0.535261 46
1 (1, 4, 10, 24, 4, 6) 0.496439 0.540030 77
2 (21, 2, 19, 14, 4, 4, 4, 1, 24) 0.659098 0.747863 78
3 (13, 2, 7, 7, 18, 7, 24, 10) 0.516497 0.837317 83
4 (14, 24) 0.343750 0.744226 114
5 (13, 7, 24) 0.599393 0.407310 118
6 (24,) 0.775000 0.827735 121
7 (0, 2, 24, 11, 9, 18, 6, 24) 0.565749 0.989251 154
8 (4, 4, 24) 0.491652 0.546454 205
9 (24, 23, 23, 23, 3, 15) 0.520525 0.507953 254
10 (24, 24, 23, 1) 0.557920 0.788963 263
11 (24, 4) 0.509821 0.844705 266
12 (4, 4, 7, 0, 24) 0.440069 0.991061 288
13 (9, 10, 24, 24) 0.494785 0.542248 304
14 (7, 14, 20, 24) 0.346269 0.741000 305

labels
0 defeated
1 defeated
2 defeated
3 defeated
4 defeated
5 defeated
6 supportive
7 supportive
8 defeated
9 defeated
10 defeated
11 defeated
12 supportive
13 defeated
14 defeated

The attacking network of the reviews are visualized as below for better understanding the output.

1.3. Example: Review Labeling by Topic 11

Orange3-Argument Documentation, Release 0.1.2

[14]: import networkx as nx
import matplotlib.pyplot as plt

DG = nx.DiGraph()
DG.add_edges_from(edges)

graph layout
pos = nx.shell_layout(DG)

draw nodes
reliable_indices = arg_selection[arg_selection["labels"] == "supportive"].index.tolist()
unreliable_indices = arg_selection[arg_selection["labels"] == "defeated"].index.tolist()
nx.draw_networkx_nodes(DG, pos, nodelist=reliable_indices, node_color="tab:green")
nx.draw_networkx_nodes(DG, pos, nodelist=unreliable_indices, node_color="tab:red")

draw edges
nx.draw_networkx_edges(DG, pos, width=df_edges["weight"])

draw labels
labels = {i: i for i in arg_selection.index}
nx.draw_networkx_labels(DG, pos, labels, font_size=9, font_color="whitesmoke")

plt.show()

It can be seen from the above plot that review #6, #7, and #12 are considered reliable, while the others are not. Look
back to the arg_selection table, it seems that those reviews indeed show very high level of consistence, except #6,
which is attacked by #3 and #11. But since they are also attacked by some other reviews, #6 is safe.

The weights of edges seems to make sense. One example here is that the attack 11 → 6 is much weaker than 3 → 6,

12 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

because #3 describes the totally opposite returning experience than #6 and #11 (can’t return in #3 vs. return succesfully
in $6 and #11).

1.4 Use as Widgets on Orange3

We have developed a series of widgets on Orange3, bundling all the essential functionalities for this task. These widgets
not only facilitate the analysis but also offer additional visual exploration tools for a more intuitive understanding of
the results and insights discovery. Researchers can also benefit from the flexibility of Orange3’s built-in functionalities
and components to tailor workflows to their specific research needs.

1.4.1 How to use this package on Orange3

It’s highly recommended that you first read the documents of Orange3, especially the visual programming session,
to understand the basics of building scientific workflows with Orange3. Especially, Orange3 provides a substantial
number of built-in widgets, which are quite useful.

For demonstration purpose, an example workflow is provided in the GitHub repository to showcase how to utilize this
library effectively within Orange3.

To run the workflow on your own computer, you need to first install our package, which includes all the dependencies.
Then, to start Orange3 GUIs, run the following command in your terminal:

python -m Orange.canvas

1.4. Use as Widgets on Orange3 13

https://orangedatamining.com/docs/
https://orangedatamining.com/widget-catalog/
https://github.com/EyeofBeholder-NLeSC/orange3-argument/tree/doc/examples

Orange3-Argument Documentation, Release 0.1.2

Executing this command will launch the Orange3 GUI, known as the ‘canvas.’ If your setup is correct, you should
observe the following interface, where the ‘Argument’ add-on is visible on the left panel of widgets. After reaching
this point, you can proceed by opening the workflow file and running it sequentially from left to right. Start by double-
clicking on the ‘JSON Reader’ widget to load the example dataset file located in the same folder as the workflow file.

Note: Loading pre-trained language models and performing topic modeling with the Argument Chunker widget may
take some time, which might make the program appear unresponsive. Kindly exercise patience and wait for a moment.

1.4.2 User manual of the widgets

JSON File Reader

Read a local JSON file and output its data as a table.

14 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Signals

Inputs

• (None)

Outputs:

• Data: Output data table

Description

JSON File Reader provides a user interface for selecting and reading a local JSON file. It processes the JSON content,
converts it to a table, and outputs the resulting data as a Table type output, which can be used in an Orange workflow
for further analysis and visualization.

Example

Here is an example workflow of using the JSON file reader widget to read a json file.

Double-clicking the widget opens a sub-interface where users can use the ... button to select an input file using the
system file browser.

Clicking the Read button will get the following table as output

1.4. Use as Widgets on Orange3 15

Orange3-Argument Documentation, Release 0.1.2

Argument Chunker

Segment text-based arguments, enable users to explore the thematic structure of the arguments and their underlying
topics.

Signals

Inputs

• Data: Data table that contains the argument-level information. This table must contain two columns: argument
for argument text and score that is the corresponding overview score.

Outputs:

• Chunk Data: Data table that contains information about argument chunks, including columns: chunk, argu-
ment_id, topic, rank, and polarity_score.

• Topic Data: Data table that contains information about topics of chunks, including columns: name, Represen-
tation, Representative_Docs, keywords, keyword_scores, topic, and count.

16 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Description

Argument Chunker implements the following functions:

• Chunking: Argument texts are first splitted into sentences, which will then be further parsed into chunks. De-
pendency parsing is chosen as the default parsing method here. A chunk corpus is generated as the result of this
step, including chunk text and the corresponding argument id.

• Topic modeling: Topic modeling is performed on the chunk corpus to learn the themes there. This process is
implemented based on a BERT-based topic modeling approach in Python named BERTopic. To summarize this
step in brief: chunks are first embedded as high-dimensional vectors through a pre-selected sentence-transformer
model; then a dimensionality reduction algorithm is applied to reduce the dimension of the vectors for efficient
computation; afterwards, chunks are clustered based on the corresponding vectors, with control of clustering
outliers; and finally topics are generated on top of the clustering results.

• Sentiment analysis: Each chunk will be calculated the sentiment (polarity) scores, while the definition of senti-
ment polarity and an example can be found here.

• Chunk ranking: Chunks are ranked on the argument level, this means each chunk will be given a score of impor-
tance within the argument it belongs. This ranking is calculated through PageRank of chunks on their similarity
network.

Control

(None)

Example

The following workflow shows how the argument chunker widget works:

where the input Arguments` table looks like this:

1.4. Use as Widgets on Orange3 17

https://maartengr.github.io/BERTopic/index.html
https://textblob.readthedocs.io/en/dev/quickstart.html?highlight=sentiment%20score#sentiment-analysis

Orange3-Argument Documentation, Release 0.1.2

Double-clicking on the widget will show the following subinterface:

After clicking the chunk` button and wait for a while, and input table will be processed and two output tables are
generated like this.

18 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Argument Processor

Calculate argument-level metrics and measures.

Signals

Inputs

• Argument Data: Data table that contains the argument-level information. This table must contain two columns:
argument for argument text and score that is the corresponding overview score.

• Chunk Data: Data table that contains information about argument chunks, including columns: chunk, argu-
ment_id, topic, rank, and polarity_score.

Outputs:

• Argument Data: Data table that contains additional information of arguments to the input data table, including
columns: argument, score, topics, readability, sentiment, and coherence.

Description

Argument Processor implements the following functions:

• Topic merging: For each argument, its topic is defined as the combination of the topics of chunks that belongs
to this one.

• Argument readability computing: The Flesh-Kincaid reading score is computed for each arugment, check this
link for more information.

1.4. Use as Widgets on Orange3 19

https://spacy.io/universe/project/spacy_readability

Orange3-Argument Documentation, Release 0.1.2

• Argument Coherence computing: In this step, the coherence between the sentiment and overall score of argu-
ments are calculated, where the sentiment score of argument is calculated as the sum of sentiment scores of
corresponding chunks, weighted by chunk ranks.

Control

(None)

Example

Here is an example workflow that shows how the argument processor widget works:

where the input Arguments and Chunks table look like this:

20 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Double-clicking the widget opens the subinterface like this:

By clicking on the Process button and wait for a while, the result data table will be computed like this:

1.4. Use as Widgets on Orange3 21

Orange3-Argument Documentation, Release 0.1.2

Argument Miner

Generate attacking relationship information of arguments from argument corpus.

Signals

Inputs

• Argument Data: Data table that contains additional information of arguments to the input data table, including
columns: argument, score, topics, readability, sentiment, and coherence.

Outputs:

• Edge Data: Data table that contains edge information of the argument attacking network, including columns:
source, target, weight.

• Node Data: Data table that contains node information of the argument attacking network, including one addi-
tional column than the input argument data table that is label.

Description

Argument Miner has the following functions:

• Attacking network mining: Based on the input table, an argument attacking network is learned for a given topic,
where nodes are arguments that cover the given topic, and edges represent a kind of disagreeing relation between
arguments. Weights of edges are computed as the coherence gap of the corresponding two nodes, while direction
is determined as from high to low coherent node.

• Node labeling: Based on the learned structure of the attacking network, nodes (arguments) are classified and
labeled as either supportive` or defeated, which can be simply understood as reliable or non-reliable. There are
three roles of labeling the nodes:

– If a node is not being attacked by any other nodes, this node is labeled as supportive.

– If all attackers of a node are being attacked by some other nodes, this node is labeled as supportive.

– If a node is not supportive, it is labeled as defeated.

Control

• Select topic: a combo box that allows user to choose a topic to generate the attacking network.

22 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Example

Here is an example workflow that shows how the argument miner widget works:

where the input Processed Arguments and Topics` tables are as follows:

1.4. Use as Widgets on Orange3 23

Orange3-Argument Documentation, Release 0.1.2

Double-clicking the widget opens the subinterface of the widget like this:

By selecting the target topic (24 in this example) and clicking the mine button, the result Nodes` and Edges` tables are
generated as follows:

24 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

1.4. Use as Widgets on Orange3 25

Orange3-Argument Documentation, Release 0.1.2

Argument Explorer

Network visualization of argument attacking relationships.

Inputs

• `Edge Data: Data table that contains edge information of the argument attacking network, including columns:
source, target, weight.

• Node Data: Data table that contains node information of the argument attacking network.

Outputs

• Selected Data: Data table that contains information of the selected nodes.

Description

Argument Explorer has the following function:

• Network visualization: The argument attacking network is visualized with node coler representing their labels
(green for supportive and red for defeated) and edge width for showing weights.

• Node selection: This widget allows to select node(s) and this will update the output table that contains the
information of selected nodes. Also, when a node is selected, all the edges relevant to that node will be highlighed
by hiding the unrelevant edges.

• Layouting: A set of network layout can be chosen, that include spring, multipartite, kamada kawai, and spectral.

• Navigation: This widget supports a series of navigating functions for better observing the network, that include
zooming, panning, and centralizing. Also, by hovering over a node, the relevant meta information of that node
will be shown in the popping-up tooltips.

Control

• Graph layout: Layout used for positing nodes and edges in the network.

• Node sparsity: Spatial closeness of nodes, in range of [1, 10]

• Zoom/Select: Navigation tools for better observing the network.

• Send Automatically: if the checkbox is enabled, the information of selected nodes will be automatically sent
to the output data.

26 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Example

Here is an example workflow that shows how the widget works:

where the input Edges and Nodes table look like this:

1.4. Use as Widgets on Orange3 27

Orange3-Argument Documentation, Release 0.1.2

The result network can be observed directly from the widget subinterface:

28 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

1.5 API Reference

This page contains auto-generated API reference documentation1.

1.5.1 orangearg

Subpackages

orangearg.argument

Subpackages

orangearg.argument.miner

Submodules

orangearg.argument.miner.chunker

Argument chunker module

Module Contents

Classes

TopicModel Topic modeling class.

Functions

load_nlp_pipe(model_name) Download the required nlp pipe if not exist
get_chunk(→ Tuple[List[int], List[str]]) Split documents of a given corpus into chunks.
get_chunk_polarity_score(chunks) Compute polarity score of each chunk in the given list.
get_chunk_topic(chunks) Get topic information and embedding vectors of chunks

via topic modeling.
get_chunk_rank(arg_ids, embeds) In each argument, comput rank of chunks within.
get_chunk_table(arg_ids, chunks, p_scores, topics,
ranks)

Given all the measures of chunks, generate and return
the chunk table as a pandas dataframe, with pre-defined
column names.

orangearg.argument.miner.chunker.load_nlp_pipe(model_name: str)
Download the required nlp pipe if not exist

Parameters
model_name (str) – name of the nlp pipe, a full list of models can be found from https://spacy.
io/usage/models.

1 Created with sphinx-autoapi

1.5. API Reference 29

https://spacy.io/usage/models
https://spacy.io/usage/models
https://github.com/readthedocs/sphinx-autoapi

Orange3-Argument Documentation, Release 0.1.2

Returns
The spacy nlp model.

orangearg.argument.miner.chunker.get_chunk(docs: List[str])→ Tuple[List[int], List[str]]
Split documents of a given corpus into chunks.

A chunk can be considered as a meaningful clause, which can be part of a sentence. For instance, the sentence
“I like the color of this car but it’s too expensive.” will be splitted as two chunks, which are “I like the color of
this car” and “but it’s too expensive”. A dependency parser is implemented for doing this job.

Parameters
docs (List[str]) – The input corpus.

Returns
ids of the arguments that the chunks belongs to. List[str]: chunk text.

Return type
List[int]

orangearg.argument.miner.chunker.get_chunk_polarity_score(chunks: List[str])
Compute polarity score of each chunk in the given list.

The polarity score is a float within the range [-1.0, 1.0], where 0 means neutral, + means positive, and - means
negative.

Parameters
chunks (List[str]) – chunk list

Returns
polarity scores of the given chunks

Return type
List[float]

orangearg.argument.miner.chunker.get_chunk_topic(chunks: List[str])
Get topic information and embedding vectors of chunks via topic modeling.

Parameters
chunks (List[str]) – chunk list.

Returns
topic ids of chunks. np.ndarray: embedding vectors of chunks. pd.DataFrame: Table of topic
information.

Return type
List[int]

orangearg.argument.miner.chunker.get_chunk_rank(arg_ids: List[int], embeds: numpy.ndarray)
In each argument, comput rank of chunks within.

Rank can be understood as importance of chunks. This function computes the relative importance of chunks
within arguments they belong to. This is done by applying the Pagerank algorithm, where similarity is computed
as the cosine similarity of chunk embedding vectors.

Parameters

• arg_ids (List[int]) – ids of arguments that chunks belongs to.

• embeds (np.ndarray) – embedding vectors of chunks.

Returns
rank of chunks

30 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Return type
List[float]

orangearg.argument.miner.chunker.get_chunk_table(arg_ids: List[int], chunks: List[str], p_scores:
List[float], topics: List[int], ranks: List[float])

Given all the measures of chunks, generate and return the chunk table as a pandas dataframe, with pre-defined
column names.

Parameters

• arg_ids (List[int]) – ids of arguments that chunks belong to

• chunks (List[str]) – chunk text

• p_scores (List[float]) – polarity score of chunks

• topics (List[int]) – topic id of chunks

• ranks (List[float]) – rank of chunks

Returns
chunk table

Return type
pd.DataFrame

class orangearg.argument.miner.chunker.TopicModel

Topic modeling class.

Functions are implemented based on the BERTopic model. For now, the topic model is setup with a set of default
parameters of the sub-models. However, it should be possible that the user can config it further. This will be a
next step.

_rd_model (

obj:’UMAP’): instance of UMAP algorithm as the dimensionality reduction sub-model.

model (

obj:’BERTopic’): the topic model that applied the sub-models predefined.

init_model(transformer: str = 'all-mpnet-base-v1', n_components: int = 5, min_cluster_size: int = 10)
Initialize the topic model by indicating a number of arguments.

Parameters

• transformer (str, optional) – Name of the sentence embedding model. Defaults to
“all-mpnet-base-v1”. A list of pretrained models can be found here: https://www.sbert.
net/docs/pretrained_models.html.

• n_components (int, optional) – Number of dimensions after reduction. Defaults to
5.

• min_cluster_size (int, optional) – Minimum size of clusters for the clustering al-
gorithm. Defaults to 5.

fit_transform_reduced(docs: List[str])→ List[int]
Further reduce outliers from the result of the fit_transform function.

Note that BERTopic is a clustering approach, which means that it doesn not work if there is noth-
ing to be clustered. And keep in mind that the input corpus should contain at least 1000 documents
to get meaningful results. Refer to this thread: https://github.com/MaartenGr/BERTopic/issues/59#
issuecomment-775718747.

1.5. API Reference 31

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://github.com/MaartenGr/BERTopic/issues/59#issuecomment-775718747
https://github.com/MaartenGr/BERTopic/issues/59#issuecomment-775718747

Orange3-Argument Documentation, Release 0.1.2

Parameters
docs (List[str]) – The input corpus.

Returns
Topics of the input docs.

Return type
List[int]

get_topic_table()→ pandas.DataFrame
Get the table of topic information and return it as a pandas dataframe.

Returns
The topic table.

Return type
pd.DataFrame

get_doc_embeds()→ numpy.ndarray
Get the embeddings of the docs.

Returns
Embeddings of the docs, in size of (n_doc, n_components).

Return type
np.ndarray

orangearg.argument.miner.miner

Argument mining module

Module Contents

Functions

select_by_topic(→ pandas.DataFrame) Select arguments mentioning the given topic.
get_edges(→ List[Tuple[int]]) Get edges from argument dataframe.
get_edge_weights(→ List[float]) Get edge weights.
get_edge_table(→ pandas.DataFrame) Get the edge dataframe.
get_node_labels(→ List[str]) Get labels of arguments given the attacking network.
get_node_table(→ pandas.DataFrame) Get the node dataframe.

orangearg.argument.miner.miner.select_by_topic(data: pandas.DataFrame, topic: int)→
pandas.DataFrame

Select arguments mentioning the given topic.

Parameters

• data (pd.DataFrame) – The argument dataframe that must contain the ‘topics’ column.

• topic (int) – The given topic to select.

Raises
ValueError – if the ‘topics’ value of an argument is stored as something else other than a tuple
(e.g. a list).

32 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Returns
Part of the original argument dataframe that only contains arguments mentioning the given topic.

Return type
pd.DataFrame

orangearg.argument.miner.miner.get_edges(data: pandas.DataFrame)→ List[Tuple[int]]
Get edges from argument dataframe.

Edges (attacks) only exist if the two arguments have different overall scores. Edges are tuple of source and target,
which are indices of the corresponding argument in the input dataframe.

Parameters
data (pd.DataFrame) – The argument dataframe that must have the ‘score’ column.

Returns
The edge list.

Return type
List[Tuple[int]]

orangearg.argument.miner.miner.get_edge_weights(data: pandas.DataFrame, edges: List[Tuple[int]])→
List[float]

Get edge weights.

Edge weights are computed as the difference between the coherence of the source and that of the target.

Parameters

• data (pd.DataFrame) – The argument dataframe that must have the ‘coherence’ column.

• edges (List[Tuple[int]]) – The edge list.

Returns
The list of edge weights.

Return type
List[float]

orangearg.argument.miner.miner.get_edge_table(edges: List[Tuple[int]], weights: List[float])→
pandas.DataFrame

Get the edge dataframe.

There will be three columns in the output dataframe, which are ‘source’, ‘target’, and ‘weight’. Together, they
describe weighted directed edges from source to target argument. Note that there will be no negative weights
in the output dataframe, instead, all values will be replace with their absolute values. For edges with negative
weights, we swap their source and target.

Parameters

• edges (List[Tuple[int]]) – The edge list, which are tuples of source and target argument
ids.

• weights (List[float]) – The list of edge weights.

Raises
ValueError – if size of the input lists doesn’t match.

Returns
The result edge dataframe.

Return type
pd.DataFrame

1.5. API Reference 33

Orange3-Argument Documentation, Release 0.1.2

orangearg.argument.miner.miner.get_node_labels(indices: List[int], sources: List[int], targets: List[int])
→ List[str]

Get labels of arguments given the attacking network.

Arguments are separated into two classes, ‘supportive’ and ‘defeated’, which generally means reliable and un-
reliable. The rule of detecting the labels is as follows: if an argument is attacked by another argument who is
not attacked by any argument, then this argument is labeled as ‘defeated’; otherwise, it’s labeled as ‘supportive’.
That means, if an argument appears in targets, where its corresponding source doesn’t, this argument will be
labeled as ‘defeated’, and otherwise ‘supportive’.

Parameters

• indices (List[int]) – The node index list

• sources (List[int]) – The source list of the attacking network.

• targets (List[int]) – The target list of the attacking network.

Returns
The label list.

Return type
List[str]

orangearg.argument.miner.miner.get_node_table(arg_ids: List[int], arguments: List[str], scores:
List[int], labels: List[str])→ pandas.DataFrame

Get the node dataframe.

The node dataframe will contain 4 columns, that are ‘argument_id’, ‘argument’, ‘score’, and ‘label’.

Parameters

• arg_ids (List[int]) – The argument id list.

• arguments (List[str]) – The argument text list.

• scores (List[int]) – The list of argument overall score.

• labels (List[str]) – The argument label list.

Returns
The result node dataframe.

Return type
pd.DataFrame

orangearg.argument.miner.processor

Argument processor module.

34 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Module Contents

Functions

_match_list_size(*args) With an arbitrary number of lists as input, check if they
are in the same size.

_aggregate_list_by_another(→ Dict) Aggregate a list according to elements of another list.
get_argument_topics(→ List[Tuple[int]]) Get argument topics.
get_argument_sentiment(→ List[float]) Get argument sentiment score.
get_argument_coherence(→ List[float]) Get argument coherence.
update_argument_table(→ pandas.DataFrame) Return a copy of argument dataframe, with new columns

of argument topics, sentiments, and coherences.

orangearg.argument.miner.processor._match_list_size(*args: List)
With an arbitrary number of lists as input, check if they are in the same size.

orangearg.argument.miner.processor._aggregate_list_by_another(keys: List, values: List)→ Dict
Aggregate a list according to elements of another list.

Parameters

• keys (List) – The group keys.

• values (List) – The list to be aggregated.

Returns
The aggregation result.

Return type
Dict

orangearg.argument.miner.processor.get_argument_topics(arg_ids: List[int], topics: List[int])→
List[Tuple[int]]

Get argument topics.

The topics of an argument is a combination of the topics of all chunks that belong to this argument. Duplications
are not removed, and the reason behind is that duplications can be treated as a sign of topic importance. Also,
even though two chunks can belong to the same topic, they could still have different ranks within an argument.

Parameters

• arg_ids (List[int]) – the argument ids of chunks.

• topics (List[int]) – the topic indices of chunks.

Returns
list of argument topics, which is also a list containing topic indices of chunks belonging to this
argument.

Return type
List[list[int]]

orangearg.argument.miner.processor.get_argument_sentiment(arg_ids: List[int], ranks: List[float],
p_scores: List[float], min_sent: int = -1,
max_sent: int = 1)→ List[float]

Get argument sentiment score.

1.5. API Reference 35

Orange3-Argument Documentation, Release 0.1.2

The sentiment score of an argument is calculated as a weighted sum of sentiment scores of chunks belonging to
this argument, where weights are ranks of the chunks. The result score is then normalized into range [0, 1].

Parameters

• arg_ids (List[int]) – the argument ids of chunks.

• ranks (List[float]) – the pagerank of chunks within arguments.

• p_scores (List[float]) – the sentiment polarity scores of chunks.

• min_sent (int) – minimun of argument sentiment before normalization. Defaults to -1.

• max_sent (int) – maximum of argument sentiment before normalization. Defaults to 1.

Returns
List of argument sentiment scores, which are floats in range [0, 1].

Return type
List[float]

orangearg.argument.miner.processor.get_argument_coherence(scores: List[int], sentiments: List[float],
min_score: int = 1, max_score: int = 5,
variance: float = 0.2)→ List[float]

Get argument coherence.

Coherence is computed as inversed difference between sentiments and overall scores. Overall scores are first
normalized into the same range as argument sentiments, which is [0, 1]. Then their differences are computed
and applied a Gaussian kernal to invert and scale the differences to [0, 1].

Parameters

• scores (List[int]) – List of argument overall scores.

• sentiments (List[float]) – List of argument sentiment scores.

• min_score (int, optional) – Lower bound of scores. Defaults to 1.

• max_score (int, optional) – Upper bound of scores. Defaults to 5.

• variance (float) – variance of the Gaussian kernal.

Returns
List of argument coherence scores, in range of (0, 1]

Return type
List[float]

orangearg.argument.miner.processor.update_argument_table(df_arguments: pandas.DataFrame,
topics: List[List[int]], sentiments:
List[float], coherences: List[float])→
pandas.DataFrame

Return a copy of argument dataframe, with new columns of argument topics, sentiments, and coherences.

Parameters

• df_arguments (pd.DataFrame) – argument dataframe.

• topics (List[List[int]]) – list of argument topics

• sentiments (List[float]) – list of argument sentiment scores

• coherences (List[float]) – list of argument coherence scores

Returns
description

36 Chapter 1. Contents

Orange3-Argument Documentation, Release 0.1.2

Return type
pd.DataFrame

orangearg.argument.miner.reader

Argument filre reader module

This module implements functions for reading input data files in different formats. So far, we only have the support to
JSON file. But we forsee the need of supporting other formats, and all future functions in this scope should be in this
module.

Module Contents

Functions

read_json_file(→ pandas.DataFrame) Read a local JSON file and return its content as a pandas
dataframe.

orangearg.argument.miner.reader.read_json_file(fpath: str)→ pandas.DataFrame
Read a local JSON file and return its content as a pandas dataframe.

This function will automatically handle the case that a JSON file contains multiple JSON objects. It will also
normalize semi-structured JSON strings.

Parameters
fpath (str) – The file path

Returns
The pandas dataframe object that contains content of the JSON file read from the given path.

Return type
pd.DataFrame

orangearg.argument.miner.utilities

Collection of helper functions.

Module Contents

Functions

check_columns(expected_cols, data) Check if a list of given columns exist in a given Pandas
dataframe.

orangearg.argument.miner.utilities.check_columns(expected_cols: List[str], data: pandas.DataFrame)
Check if a list of given columns exist in a given Pandas dataframe.

Parameters

1.5. API Reference 37

Orange3-Argument Documentation, Release 0.1.2

• expected_cols (List[str]) – list of columns to check

• df (pd.DataFrame) – pandas dataframe to check

Raises
ValueError – if any of the expected columns are missing.

38 Chapter 1. Contents

PYTHON MODULE INDEX

o
orangearg, 29
orangearg.argument, 29
orangearg.argument.miner, 29
orangearg.argument.miner.chunker, 29
orangearg.argument.miner.miner, 32
orangearg.argument.miner.processor, 34
orangearg.argument.miner.reader, 37
orangearg.argument.miner.utilities, 37

39

Orange3-Argument Documentation, Release 0.1.2

40 Python Module Index

INDEX

Symbols
_aggregate_list_by_another() (in module or-

angearg.argument.miner.processor), 35
_match_list_size() (in module or-

angearg.argument.miner.processor), 35

C
check_columns() (in module or-

angearg.argument.miner.utilities), 37

F
fit_transform_reduced() (or-

angearg.argument.miner.chunker.TopicModel
method), 31

G
get_argument_coherence() (in module or-

angearg.argument.miner.processor), 36
get_argument_sentiment() (in module or-

angearg.argument.miner.processor), 35
get_argument_topics() (in module or-

angearg.argument.miner.processor), 35
get_chunk() (in module or-

angearg.argument.miner.chunker), 30
get_chunk_polarity_score() (in module or-

angearg.argument.miner.chunker), 30
get_chunk_rank() (in module or-

angearg.argument.miner.chunker), 30
get_chunk_table() (in module or-

angearg.argument.miner.chunker), 31
get_chunk_topic() (in module or-

angearg.argument.miner.chunker), 30
get_doc_embeds() (or-

angearg.argument.miner.chunker.TopicModel
method), 32

get_edge_table() (in module or-
angearg.argument.miner.miner), 33

get_edge_weights() (in module or-
angearg.argument.miner.miner), 33

get_edges() (in module or-
angearg.argument.miner.miner), 33

get_node_labels() (in module or-
angearg.argument.miner.miner), 33

get_node_table() (in module or-
angearg.argument.miner.miner), 34

get_topic_table() (or-
angearg.argument.miner.chunker.TopicModel
method), 32

I
init_model() (orangearg.argument.miner.chunker.TopicModel

method), 31

L
load_nlp_pipe() (in module or-

angearg.argument.miner.chunker), 29

M
module

orangearg, 29
orangearg.argument, 29
orangearg.argument.miner, 29
orangearg.argument.miner.chunker, 29
orangearg.argument.miner.miner, 32
orangearg.argument.miner.processor, 34
orangearg.argument.miner.reader, 37
orangearg.argument.miner.utilities, 37

O
orangearg

module, 29
orangearg.argument

module, 29
orangearg.argument.miner

module, 29
orangearg.argument.miner.chunker

module, 29
orangearg.argument.miner.miner

module, 32
orangearg.argument.miner.processor

module, 34
orangearg.argument.miner.reader

module, 37

41

Orange3-Argument Documentation, Release 0.1.2

orangearg.argument.miner.utilities
module, 37

R
read_json_file() (in module or-

angearg.argument.miner.reader), 37

S
select_by_topic() (in module or-

angearg.argument.miner.miner), 32

T
TopicModel (class in or-

angearg.argument.miner.chunker), 31

U
update_argument_table() (in module or-

angearg.argument.miner.processor), 36

42 Index

	Contents
	Introduction
	Installation
	Preparation
	Installation

	Example: Review Labeling by Topic
	Read the input file
	Split arguments into chunks
	Merge chunks back to arguments
	Review labeling

	Use as Widgets on Orange3
	How to use this package on Orange3
	User manual of the widgets
	JSON File Reader
	Signals
	Description
	Example

	Argument Chunker
	Signals
	Description
	Control
	Example

	Argument Processor
	Signals
	Description
	Control
	Example

	Argument Miner
	Signals
	Description
	Control
	Example

	Argument Explorer
	Description
	Control
	Example

	API Reference
	orangearg
	Subpackages
	orangearg.argument
	Subpackages
	orangearg.argument.miner
	Submodules
	orangearg.argument.miner.chunker
	Module Contents
	Classes
	Functions
	orangearg.argument.miner.miner
	Module Contents
	Functions
	orangearg.argument.miner.processor
	Module Contents
	Functions
	orangearg.argument.miner.reader
	Module Contents
	Functions
	orangearg.argument.miner.utilities
	Module Contents
	Functions

	Python Module Index
	Index

