

Orange3 Argument Add-on Documentation

This work is an open-source Python package that implements a pipeline of processing, analyzing, and visualizing an argument corpus and the attacking relationship inside the corpus.

It also implements the corresponding GUIs on a scientific workflow platform named Orange3 [https://orangedatamining.com/], so that users with little knowledge of Python programming can also benefit from it.

Contents

	Introduction

	Installation

	Example: Review Labeling by Topic

	Use as Widgets on Orange3

	API Reference

Introduction

This work is designed with a clear mission: to empower researchers in building their own argument mining workflows effortlessly. Leveraging the capabilities of state-of-the-art, pre-trained language models for natural language processing, this tool facilitates the process of processing, analyzing, and understanding arguments from text data.

At its core, this work is committed to transparency and interpretability throughout the analysis process. We believe that clarity and comprehensibility are paramount when working with complex language data. As such, the tool not only automates the task but also ensures that the results are easily interpretable, allowing researchers to gain valuable insights from their data.

Moreover, we have implemented an intuitive, visual programming module that brings the power of argument mining to researchers with limited programming expertise. This feature enables individuals from diverse backgrounds to harness the potential of argument analysis, making it accessible to a broader range of researchers and practitioners.

[image: _images/flowchart.png]

The package contains three components that can be used to build the workflow:

	Chunker: Split arguments into smaller chunks, learn topics of chunks through topic modeling, measure sentiment and important of chunks within arguments.

	Processor: Merge chunks and meta back to arguments, compute coherence and other potential measurements of arguments.

	Miner: Build attack network of arguments, label supportive and defeated arguments based on the network structure.

Installation

Preparation

To install this package, we assume that you have Python installed on your computer. However, if that is not the case, we highly recommend that you first consult the installation guides of Python [https://docs.python-guide.org/starting/installation/]. You should install Python 3.8 or higher versions to use this package. Additionally, while it’s not necessary to be familiar with shell commands, if you’re interested, you can explore this helpful list of commonly used shell commands [https://guide.esciencecenter.nl/#/best_practices/language_guides/bash?id=commonly-used-command-line-tools].

Once you have Python installed, open the terminal on your computer:

	Windows: If you runs Windows 11 on your computer, press the Win key, search for “PowerShell” and then open it. In case of Windows 10, you need to first download it from the Microsoft Store [https://apps.microsoft.com/store/detail/windows-terminal/9N0DX20HK701].

	Linux: You can press the Ctrl + Alt + T key to fire up the terminal.

	MacOS: Click the Launchpad icon in the Doc, or press the Cmd + Space type “Terminal” in the search field, then click Terminal.

Installation

To install, we recommend to first navigate to your working directory by running this command:

cd /path/to/your/working/directory

We recommend to install our package in a new virtual environment to avoid dependency conflicts, and we recommand to use venv to do this:

python -m venv venv

To activate the virtual environment just created, on Windows, run:

venv\Scripts\activate

And on Linux and MacOS, run:

source venv/bin/activate

Then, to install this package, run:

pip install orangearg

Example: Review Labeling by Topic

In this notebook, we will use a subset of the Amazon Product Review data to demonstrate the usage of this work for labeling arguments. The problem to be addressed here is determining the credibility (reliable/unreliable) of reviews that evaluate a specific aspect of the product (i.e. size of shoes) and being able to provide reasoning for the results. The dataset can be found here [https://github.com/EyeofBeholder-NLeSC/orange3-argument/blob/doc/examples/example_dataset.json].

[21]:

from orangearg.argument.miner import reader, chunker, processor, miner

fpath = "./example_dataset.json"

Read the input file

[2]:

df_arguments = reader.read_json_file(fpath=fpath)
df_arguments = df_arguments.dropna().reset_index(drop=True) # remove rows with na

The results of reading the data file are as follows. It can be seen that this dataset contains two aspects of information, namely the text of the reviews (reviewText) and the rating evaluations provided by the purchasers (overall, ranging from 1 to 5 stars).

[3]:

df_arguments

[3]:

 Use as Widgets on Orange3

Use as Widgets on Orange3

We have developed a series of widgets on Orange3, bundling all the essential functionalities for this task. These widgets not only facilitate the analysis but also offer additional visual exploration tools for a more intuitive understanding of the results and insights discovery. Researchers can also benefit from the flexibility of Orange3’s built-in functionalities and components to tailor workflows to their specific research needs.

How to use this package on Orange3

It’s highly recommended that you first read the documents [https://orangedatamining.com/docs/] of Orange3, especially the visual programming session, to understand the basics of building scientific workflows with Orange3. Especially, Orange3 provides a substantial number of built-in widgets [https://orangedatamining.com/widget-catalog/], which are quite useful.

For demonstration purpose, an example workflow is provided in the GitHub repository [https://github.com/EyeofBeholder-NLeSC/orange3-argument/tree/doc/examples] to showcase how to utilize this library effectively within Orange3.

[image: _images/orange_workflow.png]

To run the workflow on your own computer, you need to first install our package, which includes all the dependencies. Then, to start Orange3 GUIs, run the following command in your terminal:

python -m Orange.canvas

Executing this command will launch the Orange3 GUI, known as the ‘canvas.’ If your setup is correct, you should observe the following interface, where the ‘Argument’ add-on is visible on the left panel of widgets. After reaching this point, you can proceed by opening the workflow file and running it sequentially from left to right. Start by double-clicking on the ‘JSON Reader’ widget to load the example dataset file located in the same folder as the workflow file.

[image: _images/orange_gui.png]

Note

Loading pre-trained language models and performing topic modeling with the Argument Chunker widget may take some time, which might make the program appear unresponsive. Kindly exercise patience and wait for a moment.

User manual of the widgets

	JSON File Reader

	Argument Chunker

	Argument Processor

	Argument Miner

	Argument Explorer

 JSON File Reader

JSON File Reader

[image: ../_images/OWJSONReader.png]
Read a local JSON file and output its data as a table.

Signals

Inputs

	(None)

Outputs:

	Data: Output data table

Description

JSON File Reader provides a user interface for selecting and reading a local JSON file. It processes the JSON content, converts it to a table, and outputs the resulting data as a Table type output, which can be used in an Orange workflow for further analysis and visualization.

Example

Here is an example workflow of using the JSON file reader widget to read a json file.

[image: ../_images/wf_reader.png]
Double-clicking the widget opens a sub-interface where users can use the ... button to select an input file using the system file browser.

[image: ../_images/OWJSONReader1.png]
Clicking the Read button will get the following table as output

[image: ../_images/df_raw.png]

 Argument Chunker

Argument Chunker

[image: ../_images/OWArgChunker.png]
Segment text-based arguments, enable users to explore the thematic structure of the arguments and their underlying topics.

Signals

Inputs

	Data: Data table that contains the argument-level information. This table must contain two columns: argument for argument text and score that is the corresponding overview score.

Outputs:

	Chunk Data: Data table that contains information about argument chunks, including columns: chunk, argument_id, topic, rank, and polarity_score.

	Topic Data: Data table that contains information about topics of chunks, including columns: name, Representation, Representative_Docs, keywords, keyword_scores, topic, and count.

Description

Argument Chunker implements the following functions:

	Chunking: Argument texts are first splitted into sentences, which will then be further parsed into chunks. Dependency parsing is chosen as the default parsing method here. A chunk corpus is generated as the result of this step, including chunk text and the corresponding argument id.

	Topic modeling: Topic modeling is performed on the chunk corpus to learn the themes there. This process is implemented based on a BERT-based topic modeling approach in Python named BERTopic [https://maartengr.github.io/BERTopic/index.html]. To summarize this step in brief: chunks are first embedded as high-dimensional vectors through a pre-selected sentence-transformer model; then a dimensionality reduction algorithm is applied to reduce the dimension of the vectors for efficient computation; afterwards, chunks are clustered based on the corresponding vectors, with control of clustering outliers; and finally topics are generated on top of the clustering results.

	Sentiment analysis: Each chunk will be calculated the sentiment (polarity) scores, while the definition of sentiment polarity and an example can be found here [https://textblob.readthedocs.io/en/dev/quickstart.html?highlight=sentiment%20score#sentiment-analysis].

	Chunk ranking: Chunks are ranked on the argument level, this means each chunk will be given a score of importance within the argument it belongs. This ranking is calculated through PageRank of chunks on their similarity network.

Control

(None)

Example

The following workflow shows how the argument chunker widget works:

[image: ../_images/wf_chunker.png]
where the input Arguments` table looks like this:

[image: ../_images/df_arguments.png]
Double-clicking on the widget will show the following subinterface:

[image: ../_images/OWArgChunker1.png]
After clicking the chunk` button and wait for a while, and input table will be processed and two output tables are generated like this.

[image: ../_images/df_chunks.png]
[image: ../_images/df_topics.png]

 Argument Processor

Argument Processor

[image: ../_images/OWArgProcessor.png]
Calculate argument-level metrics and measures.

Signals

Inputs

	Argument Data: Data table that contains the argument-level information. This table must contain two columns: argument for argument text and score that is the corresponding overview score.

	Chunk Data: Data table that contains information about argument chunks, including columns: chunk, argument_id, topic, rank, and polarity_score.

Outputs:

	Argument Data: Data table that contains additional information of arguments to the input data table, including columns: argument, score, topics, readability, sentiment, and coherence.

Description

Argument Processor implements the following functions:

	Topic merging: For each argument, its topic is defined as the combination of the topics of chunks that belongs to this one.

	Argument readability computing: The Flesh-Kincaid reading score is computed for each arugment, check this link [https://spacy.io/universe/project/spacy_readability] for more information.

	Argument Coherence computing: In this step, the coherence between the sentiment and overall score of arguments are calculated, where the sentiment score of argument is calculated as the sum of sentiment scores of corresponding chunks, weighted by chunk ranks.

Control

(None)

Example

Here is an example workflow that shows how the argument processor widget works:

[image: ../_images/wf_processor.png]
where the input Arguments and Chunks table look like this:

[image: ../_images/df_arguments.png]
[image: ../_images/df_chunks.png]
Double-clicking the widget opens the subinterface like this:

[image: ../_images/OWArgProcessor1.png]
By clicking on the Process button and wait for a while, the result data table will be computed like this:

[image: ../_images/df_arguments_processed.png]

 Argument Miner

Argument Miner

[image: ../_images/OWArgMiner.png]
Generate attacking relationship information of arguments from argument corpus.

Signals

Inputs

	Argument Data: Data table that contains additional information of arguments to the input data table, including columns: argument, score, topics, readability, sentiment, and coherence.

Outputs:

	Edge Data: Data table that contains edge information of the argument attacking network, including columns: source, target, weight.

	Node Data: Data table that contains node information of the argument attacking network, including one additional column than the input argument data table that is label.

Description

Argument Miner has the following functions:

	Attacking network mining: Based on the input table, an argument attacking network is learned for a given topic, where nodes are arguments that cover the given topic, and edges represent a kind of disagreeing relation between arguments. Weights of edges are computed as the coherence gap of the corresponding two nodes, while direction is determined as from high to low coherent node.

	Node labeling: Based on the learned structure of the attacking network, nodes (arguments) are classified and labeled as either supportive` or defeated, which can be simply understood as reliable or non-reliable. There are three roles of labeling the nodes:

	If a node is not being attacked by any other nodes, this node is labeled as supportive.

	If all attackers of a node are being attacked by some other nodes, this node is labeled as supportive.

	If a node is not supportive, it is labeled as defeated.

Control

	Select topic: a combo box that allows user to choose a topic to generate the attacking network.

Example

Here is an example workflow that shows how the argument miner widget works:

[image: ../_images/wf_miner.png]
where the input Processed Arguments and Topics` tables are as follows:

[image: ../_images/df_arguments_processed.png]
[image: ../_images/df_topics.png]
Double-clicking the widget opens the subinterface of the widget like this:

[image: ../_images/OWArgMiner1.png]
By selecting the target topic (24 in this example) and clicking the mine button, the result Nodes` and Edges` tables are generated as follows:

[image: ../_images/df_nodes.png]
[image: ../_images/df_edges.png]

 Argument Explorer

Argument Explorer

[image: ../_images/OWArgExplorer.png]
Network visualization of argument attacking relationships.

Inputs

	`Edge Data: Data table that contains edge information of the argument attacking network, including columns: source, target, weight.

	Node Data: Data table that contains node information of the argument attacking network.

Outputs

	Selected Data: Data table that contains information of the selected nodes.

Description

Argument Explorer has the following function:

	Network visualization: The argument attacking network is visualized with node coler representing their labels (green for supportive and red for defeated) and edge width for showing weights.

	Node selection: This widget allows to select node(s) and this will update the output table that contains the information of selected nodes. Also, when a node is selected, all the edges relevant to that node will be highlighed by hiding the unrelevant edges.

	Layouting: A set of network layout can be chosen, that include spring, multipartite, kamada kawai, and spectral.

	Navigation: This widget supports a series of navigating functions for better observing the network, that include zooming, panning, and centralizing. Also, by hovering over a node, the relevant meta information of that node will be shown in the popping-up tooltips.

Control

	Graph layout: Layout used for positing nodes and edges in the network.

	Node sparsity: Spatial closeness of nodes, in range of [1, 10]

	Zoom/Select: Navigation tools for better observing the network.

	Send Automatically: if the checkbox is enabled, the information of selected nodes will be automatically sent to the output data.

Example

Here is an example workflow that shows how the widget works:

[image: ../_images/wf_explorer.png]
where the input Edges and Nodes table look like this:

[image: ../_images/df_edges.png]
[image: ../_images/df_nodes.png]
The result network can be observed directly from the widget subinterface:

[image: ../_images/OWArgExplorer1.png]

 API Reference

API Reference

This page contains auto-generated API reference documentation [1].

	orangearg
	orangearg.argument
	orangearg.argument.miner
	orangearg.argument.miner.chunker

	orangearg.argument.miner.miner

	orangearg.argument.miner.processor

	orangearg.argument.miner.reader

	orangearg.argument.miner.utilities

[1]
Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

 orangearg

orangearg

Subpackages

	orangearg.argument
	orangearg.argument.miner
	orangearg.argument.miner.chunker

	orangearg.argument.miner.miner

	orangearg.argument.miner.processor

	orangearg.argument.miner.reader

	orangearg.argument.miner.utilities

 orangearg.argument

orangearg.argument

Subpackages

	orangearg.argument.miner
	orangearg.argument.miner.chunker

	orangearg.argument.miner.miner

	orangearg.argument.miner.processor

	orangearg.argument.miner.reader

	orangearg.argument.miner.utilities

 orangearg.argument.miner

orangearg.argument.miner

Submodules

	orangearg.argument.miner.chunker

	orangearg.argument.miner.miner

	orangearg.argument.miner.processor

	orangearg.argument.miner.reader

	orangearg.argument.miner.utilities

 orangearg.argument.miner.chunker

orangearg.argument.miner.chunker

Argument chunker module

Module Contents

Classes

	TopicModel

	Topic modeling class.

Functions

	load_nlp_pipe(model_name)

	Download the required nlp pipe if not exist

	get_chunk(→ Tuple[List[int], List[str]])

	Split documents of a given corpus into chunks.

	get_chunk_polarity_score(chunks)

	Compute polarity score of each chunk in the given list.

	get_chunk_topic(chunks)

	Get topic information and embedding vectors of chunks via topic modeling.

	get_chunk_rank(arg_ids, embeds)

	In each argument, comput rank of chunks within.

	get_chunk_table(arg_ids, chunks, p_scores, topics, ranks)

	Given all the measures of chunks, generate and return the chunk table as a pandas dataframe, with pre-defined column names.

	
orangearg.argument.miner.chunker.load_nlp_pipe(model_name: str)

	Download the required nlp pipe if not exist

	Parameters:

	model_name (str) – name of the nlp pipe, a full list of models can be found from https://spacy.io/usage/models.

	Returns:

	The spacy nlp model.

	
orangearg.argument.miner.chunker.get_chunk(docs: List[str]) → Tuple[List[int], List[str]]

	Split documents of a given corpus into chunks.

A chunk can be considered as a meaningful clause, which can be part of a sentence. For instance, the sentence “I like the color of this car but it’s too expensive.” will be splitted as two chunks, which are “I like the color of this car” and “but it’s too expensive”. A dependency parser is implemented for doing this job.

	Parameters:

	docs (List[str]) – The input corpus.

	Returns:

	ids of the arguments that the chunks belongs to.
List[str]: chunk text.

	Return type:

	List[int]

	
orangearg.argument.miner.chunker.get_chunk_polarity_score(chunks: List[str])

	Compute polarity score of each chunk in the given list.

The polarity score is a float within the range [-1.0, 1.0], where 0 means neutral, + means positive, and - means negative.

	Parameters:

	chunks (List[str]) – chunk list

	Returns:

	polarity scores of the given chunks

	Return type:

	List[float]

	
orangearg.argument.miner.chunker.get_chunk_topic(chunks: List[str])

	Get topic information and embedding vectors of chunks via topic modeling.

	Parameters:

	chunks (List[str]) – chunk list.

	Returns:

	topic ids of chunks.
np.ndarray: embedding vectors of chunks.
pd.DataFrame: Table of topic information.

	Return type:

	List[int]

	
orangearg.argument.miner.chunker.get_chunk_rank(arg_ids: List[int], embeds: numpy.ndarray)

	In each argument, comput rank of chunks within.

Rank can be understood as importance of chunks. This function computes the relative importance of chunks within arguments they belong to. This is done by applying the Pagerank algorithm, where similarity is computed as the cosine similarity of chunk embedding vectors.

	Parameters:

	
	arg_ids (List[int]) – ids of arguments that chunks belongs to.

	embeds (np.ndarray) – embedding vectors of chunks.

	Returns:

	rank of chunks

	Return type:

	List[float]

	
orangearg.argument.miner.chunker.get_chunk_table(arg_ids: List[int], chunks: List[str], p_scores: List[float], topics: List[int], ranks: List[float])

	Given all the measures of chunks, generate and return the chunk table as a pandas dataframe, with pre-defined column names.

	Parameters:

	
	arg_ids (List[int]) – ids of arguments that chunks belong to

	chunks (List[str]) – chunk text

	p_scores (List[float]) – polarity score of chunks

	topics (List[int]) – topic id of chunks

	ranks (List[float]) – rank of chunks

	Returns:

	chunk table

	Return type:

	pd.DataFrame

	
class orangearg.argument.miner.chunker.TopicModel

	Topic modeling class.

Functions are implemented based on the BERTopic model. For now, the topic model is setup with a set of default parameters of the sub-models. However, it should be possible that the user can config it further. This will be a next step.

	
_rd_model (

	obj:’UMAP’): instance of UMAP algorithm as the dimensionality reduction sub-model.

	
model (

	obj:’BERTopic’): the topic model that applied the sub-models predefined.

	
init_model(transformer: str = 'all-mpnet-base-v1', n_components: int = 5, min_cluster_size: int = 10)

	Initialize the topic model by indicating a number of arguments.

	Parameters:

	
	transformer (str, optional) – Name of the sentence embedding model. Defaults to “all-mpnet-base-v1”. A list of pretrained models can be found here: https://www.sbert.net/docs/pretrained_models.html.

	n_components (int, optional) – Number of dimensions after reduction. Defaults to 5.

	min_cluster_size (int, optional) – Minimum size of clusters for the clustering algorithm. Defaults to 5.

	
fit_transform_reduced(docs: List[str]) → List[int]

	Further reduce outliers from the result of the fit_transform function.

Note that BERTopic is a clustering approach, which means that it doesn not work if there is nothing to be clustered. And keep in mind that the input corpus should contain at least 1000 documents to get meaningful results. Refer to this thread: https://github.com/MaartenGr/BERTopic/issues/59#issuecomment-775718747.

	Parameters:

	docs (List[str]) – The input corpus.

	Returns:

	Topics of the input docs.

	Return type:

	List[int]

	
get_topic_table() → pandas.DataFrame

	Get the table of topic information and return it as a pandas dataframe.

	Returns:

	The topic table.

	Return type:

	pd.DataFrame

	
get_doc_embeds() → numpy.ndarray

	Get the embeddings of the docs.

	Returns:

	Embeddings of the docs, in size of (n_doc, n_components).

	Return type:

	np.ndarray

 orangearg.argument.miner.miner

orangearg.argument.miner.miner

Argument mining module

Module Contents

Functions

	select_by_topic(→ pandas.DataFrame)

	Select arguments mentioning the given topic.

	get_edges(→ List[Tuple[int]])

	Get edges from argument dataframe.

	get_edge_weights(→ List[float])

	Get edge weights.

	get_edge_table(→ pandas.DataFrame)

	Get the edge dataframe.

	get_node_labels(→ List[str])

	Get labels of arguments given the attacking network.

	get_node_table(→ pandas.DataFrame)

	Get the node dataframe.

	
orangearg.argument.miner.miner.select_by_topic(data: pandas.DataFrame, topic: int) → pandas.DataFrame

	Select arguments mentioning the given topic.

	Parameters:

	
	data (pd.DataFrame) – The argument dataframe that must contain the ‘topics’ column.

	topic (int) – The given topic to select.

	Raises:

	ValueError – if the ‘topics’ value of an argument is stored as something else other than a tuple (e.g. a list).

	Returns:

	Part of the original argument dataframe that only contains arguments mentioning the given topic.

	Return type:

	pd.DataFrame

	
orangearg.argument.miner.miner.get_edges(data: pandas.DataFrame) → List[Tuple[int]]

	Get edges from argument dataframe.

Edges (attacks) only exist if the two arguments have different overall scores. Edges are tuple of source and target, which are indices of the corresponding argument in the input dataframe.

	Parameters:

	data (pd.DataFrame) – The argument dataframe that must have the ‘score’ column.

	Returns:

	The edge list.

	Return type:

	List[Tuple[int]]

	
orangearg.argument.miner.miner.get_edge_weights(data: pandas.DataFrame, edges: List[Tuple[int]]) → List[float]

	Get edge weights.

Edge weights are computed as the difference between the coherence of the source and that of the target.

	Parameters:

	
	data (pd.DataFrame) – The argument dataframe that must have the ‘coherence’ column.

	edges (List[Tuple[int]]) – The edge list.

	Returns:

	The list of edge weights.

	Return type:

	List[float]

	
orangearg.argument.miner.miner.get_edge_table(edges: List[Tuple[int]], weights: List[float]) → pandas.DataFrame

	Get the edge dataframe.

There will be three columns in the output dataframe, which are ‘source’, ‘target’, and ‘weight’. Together, they describe weighted directed edges from source to target argument. Note that there will be no negative weights in the output dataframe, instead, all values will be replace with their absolute values. For edges with negative weights, we swap their source and target.

	Parameters:

	
	edges (List[Tuple[int]]) – The edge list, which are tuples of source and target argument ids.

	weights (List[float]) – The list of edge weights.

	Raises:

	ValueError – if size of the input lists doesn’t match.

	Returns:

	The result edge dataframe.

	Return type:

	pd.DataFrame

	
orangearg.argument.miner.miner.get_node_labels(indices: List[int], sources: List[int], targets: List[int]) → List[str]

	Get labels of arguments given the attacking network.

Arguments are separated into two classes, ‘supportive’ and ‘defeated’, which generally means reliable and unreliable. The rule of detecting the labels is as follows: if an argument is attacked by another argument who is not attacked by any argument, then this argument is labeled as ‘defeated’; otherwise, it’s labeled as ‘supportive’. That means, if an argument appears in targets, where its corresponding source doesn’t, this argument will be labeled as ‘defeated’, and otherwise ‘supportive’.

	Parameters:

	
	indices (List[int]) – The node index list

	sources (List[int]) – The source list of the attacking network.

	targets (List[int]) – The target list of the attacking network.

	Returns:

	The label list.

	Return type:

	List[str]

	
orangearg.argument.miner.miner.get_node_table(arg_ids: List[int], arguments: List[str], scores: List[int], labels: List[str]) → pandas.DataFrame

	Get the node dataframe.

The node dataframe will contain 4 columns, that are ‘argument_id’, ‘argument’, ‘score’, and ‘label’.

	Parameters:

	
	arg_ids (List[int]) – The argument id list.

	arguments (List[str]) – The argument text list.

	scores (List[int]) – The list of argument overall score.

	labels (List[str]) – The argument label list.

	Returns:

	The result node dataframe.

	Return type:

	pd.DataFrame

 orangearg.argument.miner.processor

orangearg.argument.miner.processor

Argument processor module.

Module Contents

Functions

	_match_list_size(*args)

	With an arbitrary number of lists as input, check if they are in the same size.

	_aggregate_list_by_another(→ Dict)

	Aggregate a list according to elements of another list.

	get_argument_topics(→ List[Tuple[int]])

	Get argument topics.

	get_argument_sentiment(→ List[float])

	Get argument sentiment score.

	get_argument_coherence(→ List[float])

	Get argument coherence.

	update_argument_table(→ pandas.DataFrame)

	Return a copy of argument dataframe, with new columns of argument topics, sentiments, and coherences.

	
orangearg.argument.miner.processor._match_list_size(*args: List)

	With an arbitrary number of lists as input, check if they are in the same size.

	
orangearg.argument.miner.processor._aggregate_list_by_another(keys: List, values: List) → Dict

	Aggregate a list according to elements of another list.

	Parameters:

	
	keys (List) – The group keys.

	values (List) – The list to be aggregated.

	Returns:

	The aggregation result.

	Return type:

	Dict

	
orangearg.argument.miner.processor.get_argument_topics(arg_ids: List[int], topics: List[int]) → List[Tuple[int]]

	Get argument topics.

The topics of an argument is a combination of the topics of all chunks that belong to this argument. Duplications are not removed, and the reason behind is that duplications can be treated as a sign of topic importance. Also, even though two chunks can belong to the same topic, they could still have different ranks within an argument.

	Parameters:

	
	arg_ids (List[int]) – the argument ids of chunks.

	topics (List[int]) – the topic indices of chunks.

	Returns:

	list of argument topics, which is also a list containing topic indices of chunks belonging to this argument.

	Return type:

	List[list[int]]

	
orangearg.argument.miner.processor.get_argument_sentiment(arg_ids: List[int], ranks: List[float], p_scores: List[float], min_sent: int = -1, max_sent: int = 1) → List[float]

	Get argument sentiment score.

The sentiment score of an argument is calculated as a weighted sum of sentiment scores of chunks belonging to this argument, where weights are ranks of the chunks. The result score is then normalized into range [0, 1].

	Parameters:

	
	arg_ids (List[int]) – the argument ids of chunks.

	ranks (List[float]) – the pagerank of chunks within arguments.

	p_scores (List[float]) – the sentiment polarity scores of chunks.

	min_sent (int) – minimun of argument sentiment before normalization. Defaults to -1.

	max_sent (int) – maximum of argument sentiment before normalization. Defaults to 1.

	Returns:

	List of argument sentiment scores, which are floats in range [0, 1].

	Return type:

	List[float]

	
orangearg.argument.miner.processor.get_argument_coherence(scores: List[int], sentiments: List[float], min_score: int = 1, max_score: int = 5, variance: float = 0.2) → List[float]

	Get argument coherence.

Coherence is computed as inversed difference between sentiments and overall scores. Overall scores are first normalized into the same range as argument sentiments, which is [0, 1]. Then their differences are computed and applied a Gaussian kernal to invert and scale the differences to [0, 1].

	Parameters:

	
	scores (List[int]) – List of argument overall scores.

	sentiments (List[float]) – List of argument sentiment scores.

	min_score (int, optional) – Lower bound of scores. Defaults to 1.

	max_score (int, optional) – Upper bound of scores. Defaults to 5.

	variance (float) – variance of the Gaussian kernal.

	Returns:

	List of argument coherence scores, in range of (0, 1]

	Return type:

	List[float]

	
orangearg.argument.miner.processor.update_argument_table(df_arguments: pandas.DataFrame, topics: List[List[int]], sentiments: List[float], coherences: List[float]) → pandas.DataFrame

	Return a copy of argument dataframe, with new columns of argument topics, sentiments, and coherences.

	Parameters:

	
	df_arguments (pd.DataFrame) – argument dataframe.

	topics (List[List[int]]) – list of argument topics

	sentiments (List[float]) – list of argument sentiment scores

	coherences (List[float]) – list of argument coherence scores

	Returns:

	description

	Return type:

	pd.DataFrame

 orangearg.argument.miner.reader

orangearg.argument.miner.reader

Argument filre reader module

This module implements functions for reading input data files in
different formats. So far, we only have the support to JSON file.
But we forsee the need of supporting other formats, and all future
functions in this scope should be in this module.

Module Contents

Functions

	read_json_file(→ pandas.DataFrame)

	Read a local JSON file and return its content as a pandas dataframe.

	
orangearg.argument.miner.reader.read_json_file(fpath: str) → pandas.DataFrame

	Read a local JSON file and return its content as a pandas dataframe.

This function will automatically handle the case that a JSON
file contains multiple JSON objects. It will also normalize
semi-structured JSON strings.

	Parameters:

	fpath (str) – The file path

	Returns:

	The pandas dataframe object that contains
content of the JSON file read from the given path.

	Return type:

	pd.DataFrame

 orangearg.argument.miner.utilities

orangearg.argument.miner.utilities

Collection of helper functions.

Module Contents

Functions

	check_columns(expected_cols, data)

	Check if a list of given columns exist in a given Pandas dataframe.

	
orangearg.argument.miner.utilities.check_columns(expected_cols: List[str], data: pandas.DataFrame)

	Check if a list of given columns exist in a given Pandas dataframe.

	Parameters:

	
	expected_cols (List[str]) – list of columns to check

	df (pd.DataFrame) – pandas dataframe to check

	Raises:

	ValueError – if any of the expected columns are missing.

 Index

Index

 _
 | C
 | F
 | G
 | I
 | L
 | M
 | O
 | R
 | S
 | T
 | U

_

 	
 	_aggregate_list_by_another() (in module orangearg.argument.miner.processor)

 	
 	_match_list_size() (in module orangearg.argument.miner.processor)

C

 	
 	check_columns() (in module orangearg.argument.miner.utilities)

F

 	
 	fit_transform_reduced() (orangearg.argument.miner.chunker.TopicModel method)

G

 	
 	get_argument_coherence() (in module orangearg.argument.miner.processor)

 	get_argument_sentiment() (in module orangearg.argument.miner.processor)

 	get_argument_topics() (in module orangearg.argument.miner.processor)

 	get_chunk() (in module orangearg.argument.miner.chunker)

 	get_chunk_polarity_score() (in module orangearg.argument.miner.chunker)

 	get_chunk_rank() (in module orangearg.argument.miner.chunker)

 	get_chunk_table() (in module orangearg.argument.miner.chunker)

 	
 	get_chunk_topic() (in module orangearg.argument.miner.chunker)

 	get_doc_embeds() (orangearg.argument.miner.chunker.TopicModel method)

 	get_edge_table() (in module orangearg.argument.miner.miner)

 	get_edge_weights() (in module orangearg.argument.miner.miner)

 	get_edges() (in module orangearg.argument.miner.miner)

 	get_node_labels() (in module orangearg.argument.miner.miner)

 	get_node_table() (in module orangearg.argument.miner.miner)

 	get_topic_table() (orangearg.argument.miner.chunker.TopicModel method)

I

 	
 	init_model() (orangearg.argument.miner.chunker.TopicModel method)

L

 	
 	load_nlp_pipe() (in module orangearg.argument.miner.chunker)

M

 	
 	
 module

 	orangearg

 	orangearg.argument

 	orangearg.argument.miner

 	orangearg.argument.miner.chunker

 	orangearg.argument.miner.miner

 	orangearg.argument.miner.processor

 	orangearg.argument.miner.reader

 	orangearg.argument.miner.utilities

O

 	
 	
 orangearg

 	module

 	
 orangearg.argument

 	module

 	
 orangearg.argument.miner

 	module

 	
 orangearg.argument.miner.chunker

 	module

 	
 	
 orangearg.argument.miner.miner

 	module

 	
 orangearg.argument.miner.processor

 	module

 	
 orangearg.argument.miner.reader

 	module

 	
 orangearg.argument.miner.utilities

 	module

R

 	
 	read_json_file() (in module orangearg.argument.miner.reader)

S

 	
 	select_by_topic() (in module orangearg.argument.miner.miner)

T

 	
 	TopicModel (class in orangearg.argument.miner.chunker)

U

 	
 	update_argument_table() (in module orangearg.argument.miner.processor)

_images/OWArgProcessor.png

_images/OWArgProcessor1.png

_images/OWArgMiner.png

_images/OWArgMiner1.png
Aum o x

Select Topic
Select a topic
24 -

=2 |11ba

_images/df_arguments.png
Info

371 instances
1 feature

No target variable.

1 meta attribute (0.3 % missing data)

Variables

VI show variable labels (if present)
Visualize numeric values

VI Color by instance classes

Selection

! select full rows

Restore Original Order

v Send Automatically

B | A371 B 371|371

®NowawN o

1
12
13
14
15
16
17
18
19
20

Arguments

argument
1always get a half size up in my tennis shoes. For some reason th....
Put them on and walked 3 hours with no problem! Love them! s....
excelente

The shoes fit well in the arch area. They are a lttle wider in the .
Tried them on in a store before buying online so | knew they'd fi
I recommend that!

My son likes these, and this is the 2nd pair he's worn.
Comfortable

Fit fine...did not like color in person

The shoe is too large. When you do lunges it hurts the heel. The
Really great for walking I'm very glad | got these and the color s...
Love these shoes. My feet feel so much better. Lots of padding a...
ok but too big

Love these shoes.. they are so comfortable.

In really like these. | wear between a 9-9.5 womens, | got the 9.5
Love these shoes!So stylish and comfortable. Just got back from...
This shoe is JUST OK. Its not as comfortable as | was expecting, c...
Best tennis shoes I've had all my lfe. Very comfortable out the b.
The color pattern and fit is what I liked the most what I liked the
love these shoes. Workout in them 3-4 times a week at the gym.

- ox

score.

LYWW LYY S NN W

_images/df_arguments_processed.png
Info

371 instances
4 features (0.1 % missing data)

No target variable.

2 meta attributes (0.1 % missing data)

Variables

VI show variable labels (if present)
Visualize numeric values

V| Color by instance classes

Selection

! select full rows

Restore Original Order
send Automatically
=2 B | A371 B371371

®NowawN o

1
12
13
14
15
16
17
18
19
20
21

Processed Arguments

argument topics
lalways ge... [3,11]
Putthemo... [1,2,1,8]
excelente [1]

The shoes ... [20,11,11, ...
Tried them ... [1,9,6,-1, 4]
Irecomme... [23]

My son like... [15,14]
Comfortable [18]

Fit fine...di... [0]

The shoe ... [26,10,3]
Really grea... [12,3]

Love these ... [13,10,6]
okbut too ... [26]

Love these ...
In really lik.
Love these ...
This shoe is... [26,-1,-1]

Best tennis... [-1,7,15]
The colorp... [1]

love these ... [13,2,16, 5]
Great shoe.... [21,4,19,

score.

VLuLnLWL LWL MWW YN s NN W

readability
92.43
105.88
-47.98
921712
77.8649
62.79
110.055
-132.58
92.965
91.255
78.81
102.045
118.175
82.4254
98.2525
94.9199
90.6614
96.8567
74.6243
90.3171
71.1362

sentiment
0.445833
0.626202
0.5
0.525977
0.712597
0.5
0.5
07
0.704167
0.575514
0.75625
0.700295
0.625
0.725
0.667514
0.668856
0.617061
0.752852
0.657083
0.56181
0.663412

- ox

coherence
0.992692
0.705173
0.535261
0.882086
0.813425
0.535261
0.535261
0.798516
0.901036
0.985845
0.86197
0.79887
0.961691
0.827735
0.758534
0.760225
0.966322
0.858383
0.745292
0.618768
0.753348

_images/OWJSONReader.png
/

JSON

_images/OWJSONReader1.png
53 JSON Reader o x

select File
(=] - mple/data/data_processed_1prod_fulljsor

Read

=27 |B3n

_images/df_chunks.png
Info

1197 instances (no missing data)
4 features

No target variable.

1 meta attribute

Variables

VI show variable labels (if present)
Visualize numeric values

VI Color by instance classes

Selection

! select full rows

Restore Original Order
v Send Automatically
=2 B | 1197 B1197]1197

®NowawN o

1
12
13
14
15
16
17
18
19
20
21

Chunks

chunk argument_id
1always get a half size up in my tennis shoes .

For some reason these feel to big in the heel area and wide .
walked 3 hours with no problem

Put them on and !

Love them !

So light feeling

excelente

The shoes fit wellin the arch area.

They are a little wider in the toe area of the shoe , you feel
This does not make the shoe uncomfortable , just had to ge.
Love the shoe .

Tried them on in a store before buying online so | knew the.
Overall 1 was looking for a durable cross training shoe that
They are really light and comfortable .

Most importantly for me they have grips on the bottoms so.
Highly satisfied with this purchase .

I recommend that !

this is the 2nd pair he 's worn.

My son likes these, and

Comfortable

Fit fine ... did not like color in person

® N0 o UnAsSsSSSWWWWN D200

topic

- oXx

rank polarity_score
0.5 -0.166667

0.5
0.250632

0.254511 o
0.242053 0.625
0.252804 0.4
1 o
0.251806 0.4
0.249534 -0.1875
0.251311 -0.5
0.247349 0.5
0.201065 0.55
0.198688 0.225
0.201709 0.4
0.200994 0.45
0.197544 0.5
1 o
0.5 o
0.5 o
1 0.4

1 0.408333

_images/df_edges.png
B8

Info

82 instances (no missing data)
3 features

No target variable.

No meta attributes.

Variables

VI show variable labels (if present)
Visualize numeric values

VI Color by instance classes

Selection

! select full rows

Restore Original Order

v Send Automatically

B |Hs2 Bs2ls2

28
29
16
26
31
30
22
25
23
18
24

20
59
60
33
57

77
78
38

weight =
0.64927
0.647709
0.628248
0.626844
0.565131
0.55373
0.544488
0.541915
0.527773
0.521952
0.509924
0.508049
0.500526
0.464739
0.463177
0.443716
0.442313
0.409495
0.402156
0.400595
0.398297

Edges

source

16
17

14
19
18
10
13
1

12

16

17

14

16

17
16

target

WNN NN YW W W w W W W ww

15

- ox

_images/OWArgChunker1.png

_images/OWArgExplorer.png

_images/OWArgChunker.png

_images/OWArgExplorer1.png
&

Eile Edit View Window Help
Layout

Argument Explorer

Graph layout
spring

Node sparsity smmm—

Zoom/select

kW Q

send Automatically

? BB & | Hass5|42 B-|4a2

_images/df_nodes.png
Info

20 instances (no missing data)
6 features

No target variable.

2 meta attributes

Variables

VI show variable labels (if present)
Visualize numeric values

VI Color by instance classes

Selection

! select full rows

Restore Original Order
v Send Automatically
=2 B |H2 B20l20

®NowawN o

1
12
13
14
15
16
17
18
19
20

argument

Love these ...
. [24,0,15,20]
. [24,1,3]

Love these
1love them.
Arteulo eq.

Nice fit
lalways we...
Bought the...

The fit was
Great shoe,
I feel liket.
Very nice s.
Fit my size
Love them
These snea.
Good light
For the pri

I wear thes...
Super comf...

Nodes

topics
[24,18,1, ...

score.

[3.4,8,20, ...

. [24,0]

[24,2,-1,2]
[24,2,10,1...
[24]
[24,2,16,1
[24,9,0,11
[24,0]
[4,24,4]
[7.24]
[24,1,9,0,8]
[24,2,20]

. [0.7.2,16, ...
- [24]

[24]
[24,0]
[24]

LuERLLLLLLL VW E VLS B Y

readability
94.9199
97.7025
74.86
-29.875
84.45
42.4675
120.205
90.0438
90.0903
80.0675
33.575
103.044
68.9375
42.6157
120.205
67.3289
95.6882
98.9607
943
73.544

sentiment
0.668856
0.753225
0.647458
0.647376
0.907813
0.549227
0.516604
g
0.746195
05722
0.789583
0.772372
0.755
0.786865
0.90475
0.546381
0.75
0.725
0.799583
0.8125

- ox

coherence
0.76022
0.85877,
0.73292
0.3507
0.97897
0.60170
0.87268
0.53526
0.85125
0.63284
0.89521
0.87850
0.86065
0.89264
0.97757,
0.59784)

0.99843
0.9044
0.91586

nav.xhtml

 Table of Contents

 		
 Orange3 Argument Add-on Documentation

 		
 Introduction

 		
 Installation

 		
 Preparation

 		
 Installation

 		
 Example: Review Labeling by Topic

 		
 Read the input file

 		
 Split arguments into chunks

 		
 Merge chunks back to arguments

 		
 Review labeling

 		
 Use as Widgets on Orange3

 		
 How to use this package on Orange3

 		
 User manual of the widgets

 		
 JSON File Reader

 		
 Argument Chunker

 		
 Argument Processor

 		
 Argument Miner

 		
 Argument Explorer

 		
 API Reference

 		
 orangearg

 		
 Subpackages

_images/example_25_0.png

_images/flowchart.png
Chunker
Segmentation
Topic modeling
Sentiment analysis
Importance ranking

Processor
Topic merging
Sentiment coherence
Other measures

Arguments

Miner
- Build attack network
- Argument labeling

_images/df_raw.png
0

Info

371 instances

1 feature

No target variable.

1 meta attribute (0.3 % missing data)
Variables

how variable labels (if present)

[visualize numeric values

olor by instance classes

Selection

Select full rows

=2 B | A371 B371371

Raw Input

_images/df_topics.png
Topics - oXx

Info name Representation Representative_Docs ~ keywords keyword_scores topic count.
28 instances (no missing data) 1 |-1_cushion_expensiv... ['cushion’, ‘expensiv... [This is the optimalsn... [cushion’, ... [0.266282642834... B 153
2 Features 2 0_true_fits_expecte... [true’, fits', 'expect... [‘Perfect fit,very com... [true’, fits'... [0.463264322971. 0 109
No target variable. 3 1_favorite_absolute_... ['favorite’, 'absolute... [Absolute Favorite . [0.658264124667. 1 7
SurEndinlnes 4 2_row_everyday_wo... [row’,everyday,'w... ["they 're great for we... [0.401105458768. 2 66
Variables 5 3_half_ordered size... [halF, ordered!, siz... ['tried the same shoe ... [halF, ‘ord... [0.524886259397. 3 62
¥ show variable labels (Fpresent) O 4-purchase_satisfed... [purchase!,'satsfe... [Very satsfied witht... [purchase’,... [0.790654259980. 4 46
7 5_slippers_tread sli.. [slippers’ tread’, 'sl... [the only reason Itrie... [slippers’, ... [0.407748419841. s 46
Visualize numeric values 8 6_attractive_sturdy_... [‘attractive’,'sturdy'... [theyare nicearoom... [attractive... [0.495497843044. 6 a6
fl ety s 9 7_mesh_job_felt su... [mesh, job’, elt’".. [feellikeanotherlaye... [mesh’ jo... [0.632049917525. 7 44
10 8_lightweight_mini... [lightweight’, 'mini... [Extremely light weig... [lightweig... [0.735696561212. 8 38
Selection 11 9_camp_cross_boot._... [camp, cross’, 'boo... ['I'm very picky withs. [0.459769281157. 9 35
) select full rows 12 10_hurt_pain_hip_bli... [hurt’, ‘pain’, hip’, b... [The second day ho... [0.596057872915... 10 34
13 11_wide_does_wider... [wide’, does’ 'wide... ['I know some people [0.471508493594. " 4s
14 12_bright_gray_oran... [bright’ gray’, ora... s n'tas gray as . [0.738897377176. 2 29
15 13_compliments_air... [compliments, ‘airp... [1have gotten soman... [complime... [0.700739769760. 3 31
16 14_loves_daughter_... [loves’,'daughter,"... [Mydaughterlovest... [loves)'da... [0.997307882484. 14 28
17 15_second_pair_pair... ['second’,’pair’, pair... [Thisismysecondor... [second’ .. [0.618717910757. 15 35
18 16_runner_miles_we... [runner, ‘miles’, we... [1do treadmill, stair... [runner’".. [0.726615678997. 16 26
T 19 17_excellent_aweso... [excellent’, ‘aweso... [‘Excellent EXC... [excellent'... [1.123185471721. 7 29
20 18_right_flexible_fir... [right, 'flexible’, fir... ['comfortable’,"It’sn... [right,fle... [0.696150041629. 18 30
v Send Automatically 21/19_owned_nike_nike... [owned, nike’, nik... ['l ordered the Nike W... [owned’, n... [0.584149667250. 19 36

=72 B |H2s B2sl2s

_images/wf_chunker.png
@ Fomrr

Arguments.

Topics

_images/wf_explorer.png
Argument Explorer

Nodes

_images/orange_gui.png
Data
Transform
Visualize
Model
Evaluate

Unsupervised

Argument Argumen
Explorer Miner Processc

750N,

JsoN

Select a widget to show its description.

See workflow examples, YouTube tutorials,
or open the welcome scree:

New
Video Tutorials

" Show at startup

Untitled

Welcome to Orange

Open Recent

@ © ©

Get Started Examples Documentation

Help us improve

_images/orange_workflow.png
@)

JSON Reader

Data

@

Edit Domain

| S/ \%

g &/ Argument Processor '\ %

k4 g Node Data
\ 2